

Using Fiber-Optic Distributed Temperature Sensing Technology in Crystal Springs Lake

Adam Stonewall Oct 20, 2020

U.S. Department of the Interior U.S. Geological Survey

All data, analysis and figures are preliminary, and subject to change.

Figure 1. Map showing study sites at Crystal Springs Lake, the Golf Pond, and surrounding area, Portland, Oregon.

Background

- Study funded by Portland Bureau of Environmental Services
- Recent improvements made to Crystal Springs Creek (culvert replacements and Westmoreland Park)
- The TMDL stipulates a 7-day average of the daily maximum stream temperature (7dADM) of 64.4 °F (18.0 °C), lower during spawning season
- Crystal Springs Creek (USGS streamgage 14211542) exceeded the TMDL by an average of 3.2 °F (1.8 °C) for 42 percent of calendar years 2003–13

Report

- Published in 2016
- Modeled pond temperature and levels for summer of 2014
- https://pubs.er.usgs. gov/publication/ofr2 0161076

Prepared in comparation with City of Portland Durane of Environmental Services

Development of a CE-QUAL-W2 Temperature Model for Crystal Springs Lake, Portland, Oregon

Open-File Report 2016-1076

U.S. Department of the Interior U.S. Geological Survey

Streamflow budgeting

Figure 2 from: Buccola, N.L., and Stonewall, A.J., 2016, Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon: U.S. Geological Survey Open-File Report 2016–1076, 26 p., http://dx.doi.org/10.3133/ofr20161076. Roughly 9.4 ft³/s exiting the lake

- Roughly 5 ft³/s entering the lake through overland springs
- Assume about 4.4 ft³/s entering the lake through springs below lake surface

Objectives

- Proof-of-concept for using Fiber Optic Distributed Temperature Sensing (DTS)
- Ascertain potential locations of underwater springs and (or) hyporheic flow
- Compare against synoptic temperature run

Fiber Optic Distributed Temperature Sensing

- Continuous measurement over kilometers
- Variable spatial and temporal resolution
- Thermal resolution can be as accurate as 0.01 degree Celsius (depends on configuration)
- Used in previous USGS studies to:
 - Monitor hydrologic processes at larger (catchment scales)
 - Quantify interchange between surface water and groundwater, such as identifying "gaining" stream reaches

Distributed Temperature Sensing

From <u>https://www.critex.fr/distributed-temperature-sensing-as-a-down-hole-tool-in-hydrogeology/</u> Oct 16, 2019

Deployment

DTS results

DTS Data

Lessons Learned

- DTS a powerful tool for reconnaissance (qualitative)
- With groundtruth/calibration, DTS interpretation can be made quantitative
- DTS requires careful georeferencing, note taking, and auxiliary data
- Tools for data visualization/analysis are available (DTSGUI)

Lessons Learned

- Bathymetry data are useful for evaluating DTS output
- Technical issue with two DTS controllers, anecdotal evidence of technology not being reliable
- Damaged or kinked FO cable can affect results
- If project were to be repeated, would include more accurate and more frequent GPS readings, and more auxiliary temperature probes.

Acknowledgements

Oregon Water Science Center

- Ann McGowan
- Erin Poor
- Laurel Stratton
- Matthew Yates

Washington Science Center

Andrew Gendaszek

Acknowledgements

 USGS Earth System Processes Division
Fred Day-Lewis
OSU Center for Transformative Environmental Programs
John Selker

Cara Walter

